Multiple Wnts Redundantly Control Polarity Orientation in Caenorhabditis elegans Epithelial Stem Cells

نویسندگان

  • Yuko Yamamoto
  • Hisako Takeshita
  • Hitoshi Sawa
چکیده

During development, cell polarization is often coordinated to harmonize tissue patterning and morphogenesis. However, how extrinsic signals synchronize cell polarization is not understood. In Caenorhabditis elegans, most mitotic cells are polarized along the anterior-posterior axis and divide asymmetrically. Although this process is regulated by a Wnt-signaling pathway, Wnts functioning in cell polarity have been demonstrated in only a few cells. We analyzed how Wnts control cell polarity, using compound Wnt mutants, including animals with mutations in all five Wnt genes. We found that somatic gonadal precursor cells (SGPs) are properly polarized and oriented in quintuple Wnt mutants, suggesting Wnts are dispensable for the SGPs' polarity, which instead requires signals from the germ cells. Thus, signals from the germ cells organize the C. elegans somatic gonad. In contrast, in compound but not single Wnt mutants, most of the six seam cells, V1-V6 (which are epithelial stem cells), retain their polarization, but their polar orientation becomes random, indicating that it is redundantly regulated by multiple Wnt genes. In contrast, in animals in which the functions of three Wnt receptors (LIN-17, MOM-5, and CAM-1) are disrupted--the stem cells are not polarized and divide symmetrically--suggesting that the Wnt receptors are essential for generating polarity and that they function even in the absence of Wnts. All the seam cells except V5 were polarized properly by a single Wnt gene expressed at the cell's anterior or posterior. The ectopic expression of posteriorly expressed Wnts in an anterior region and vice versa rescued polarity defects in compound Wnt mutants, raising two possibilities: one, Wnts permissively control the orientation of polarity; or two, Wnt functions are instructive, but which orientation they specify is determined by the cells that express them. Our results provide a paradigm for understanding how cell polarity is coordinated by extrinsic signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell shape and Wnt signaling redundantly control the division axis of C. elegans epithelial stem cells.

Tissue-specific stem cells combine proliferative and asymmetric divisions to balance self-renewal with differentiation. Tight regulation of the orientation and plane of cell division is crucial in this process. Here, we study the reproducible pattern of anterior-posterior-oriented stem cell-like divisions in the Caenorhabditis elegans seam epithelium. In a genetic screen, we identified an alg-1...

متن کامل

Netrins and Wnts Function Redundantly to Regulate Antero-Posterior and Dorso-Ventral Guidance in C. elegans

Guided migrations of cells and developing axons along the dorso-ventral (D/V) and antero-posterior (A/P) body axes govern tissue patterning and neuronal connections. In C. elegans, as in vertebrates, D/V and A/P graded distributions of UNC-6/Netrin and Wnts, respectively, provide instructive polarity information to guide cells and axons migrating along these axes. By means of a comprehensive ge...

متن کامل

Analysis of Wnt signaling during Caenorhabditis elegans postembryonic development.

Wnts play a central role in the development of many cells and tissue types in all species studied to date. Like many other extracellular signaling pathways, secreted Wnt proteins are involved in many different processes; in C. elegans these include: cell proliferation, differentiation, cell migration, control of cell polarity, axon outgrowth and control of the stem cell niche. Perturbations in ...

متن کامل

FGF signaling regulates Wnt ligand expression to control vulval cell lineage polarity in C. elegans.

The interpretation of extracellular cues leading to the polarization of intracellular components and asymmetric cell divisions is a fundamental part of metazoan organogenesis. The Caenorhabditis elegans vulva, with its invariant cell lineage and interaction of multiple cell signaling pathways, provides an excellent model for the study of cell polarity within an organized epithelial tissue. Here...

متن کامل

Complex network of Wnt signaling regulates neuronal migrations during Caenorhabditis elegans development.

Members of the Wnt family of secreted glycoproteins regulate many developmental processes, including cell migration. We and others have previously shown that the Wnts egl-20, cwn-1, and cwn-2 are required for cell migration and axon guidance. However, the roles in cell migration of all of the Caenorhabditis elegans Wnt genes and their candidate receptors have not been explored fully. We have ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011